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Classical Caputo fractional derivative

Time-fractional equations arise naturally in many fields and
from applications. A classical equation of such a kind is

∂βu(t , x)

∂tβ
= ∆u(t , x).

Here

∂βϕ(t)
∂tβ

=
1

Γ(1− β)

d
dt

∫ t

0
(t − s)−β (ϕ(s)− ϕ(0)) ds

=
1

Γ(1− β)

∫ t

0
(t − s)−βϕ′(s)ds if ϕ is Lipschitz,

where Γ(λ) =
∫∞

0 tλ−1e−tdt .
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Fractional-time equation

• Heat propogation in materials having thermal memory

• Subdiffusion describes particle moves slower than Brownian
motion, for example, due to particle sticking and trapping.

Example: (i) xerox machine, electrons in amorphous media
tend to get trapped by local imperfections and then released
due to thermal fluctuations.

(ii) hydrology: travel times of contaminants in groundwater are
much longer than that of diffusion.

(iii) biology: proteins diffuse across cell membranes.
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How to model subdiffusions?

A prototype of subdiffusion can be modeled by Brownian
motion time-changed by an inverse stable subordinator.

Continuous time random walk model:

Xn =
n∑

k=1

ξk , Tn =
n∑

j=1

ηj ,

where ξk is the k th displacement and ηj is the j th waiting or
holding time. Let Nt = max{n : Tn ≤ t}. Then Yt = XNt .

Let B is Brownian motion in Rd and S an β-stable subordinator.
Define

Et = sup{r > 0 : Sr ≤ t} = inf{r > 0 : Sr > t}.

Then BEt provides a model for anomalous sub-diffusion, where
particles spread slower than Brownian particles.
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Fractional-kinetics process

BEt is called fractional-kinetics process in some literature.

It also arises

(i) (symmetric Bouchaud’s trap model) as the quenched scaling
limit of random walks in Zd with exponential g times at each
vertices whose expected values are i.i.d random variables of
power law distribution;
Ben Arous-C̆erný 2007: For d ≥ 3 and β ∈ (0,1),{

n−β/2X[nt]; t ≥ 0
}
⇒ {BMEt ; t ≥ 0} .

For d = 2, the scaling constant is N−β/2(log N)−(1−β)/2.

(ii) as the quenched scaling limit of constant speed random
walks on Zd (d ≥ 2) with i.i.d conductances that have power law
tails. (Barlow-C̆erný 2011 for d ≥ 3, C̆erný 2011 for d = 2.)
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Connection

In general, given a Markov process Xt and an independent
β-subordinator S, one can do time change to get a new
process Yt = XEt , where Et = inf{r ≥ 0 : Sr > t}.

Question: What is the marginal distribution of Yt?

Theorem (Baeumer-Meerschaert, 2001; Meerschaert-Scheffler,
2004): u(t , x) = Ex [f (XEt )] solves

∂βu(t , x)

∂tβ
= Lxu(t , x), u(0, x) = f (x).

The self-similarity of the β-subordinator,

{Sλt ; t ≥ 0} = {λ1/βSt ; t ≥ 0} in distribution,

played an important role in their derivation.
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General time-fractional derivative

In applications and numerical approximations, there is a need
to consider more general fractional-time derivatives, for
example where its value at time t may depend only on the finite
range of the past from t − δ to t such as

d
dt

∫ t

(t−δ)+

(t − s)−β (f (s)− f (0)) ds.

Given a decreasing function w on (0,∞) with limx→∞w(x) = 0,
define

∂w
t f (t) =

d
dt

∫ t

0
w(t − s) (f (s)− f (0)) ds,
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Questions

(i) Existence and uniqueness for solution of

(κ∂t + ∂w
t ) u = Lu with u(0, x) = f (x),

and its probabilistic representation.

(ii) Given a strong Markov process X and subordinator S, what
equation does u(t , x) = Ex [f (XEt )] satisfy? Here

Et = inf{s > 0 : Ss > t}.
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Subordinator

Given a constant κ ≥ 0 and an unbounded right continuous
non-increasing function w(x) on (0,∞) with limx→∞w(x) = 0
and

∫∞
0 (1 ∧ x)(−dw(x)) <∞, there is a unique subordinator

{St ; t ≥ 0} with Laplace exponent

φ(λ) = κλ+

∫ ∞
0

(1− e−λx )(−dw(x)).

Laplace exponent: E
[
e−λSt

]
= e−tφ(λ).

Conversely, given a subordinator {St ; t ≥ 0}, there is a unique
constant κ ≥ 0 and a Lévy measure ν on (0,∞) satisfying∫∞

0 (1 ∧ x)ν(dx) <∞ so that its Laplace exponent is given by
above the display with w(x) = ν(x ,∞).
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Framework

From now on, we assume St is a subordinator with infinite Lévy
measure ν and possible drift κ ≥ 0. Define w(x) = ν(x ,∞).

Facts: Since ν(0,∞) =∞, t 7→ St is strictly increasing. Hence
the inverse subordinator Et is continuous in t .

Suppose that {Tt ; t ≥ 0} is a strongly continuous semigroup
with infinitesimal generator (L,D(L)) in some Banach space
(B, ‖ · ‖) with the property that supt>0 ‖Tt‖ <∞. Here ‖Tt‖
denotes the operator norm of the linear map Tt : B→ B.

E.g. (B, ‖ · ‖) = Lp(E ;µ) for p ≥ 1 or (C∞(E), ‖ · ‖∞).
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Main result

Theorem (C. 2017)

For every f ∈ D(L), u(t , x) := E [TEt f (x)] is the unique solution
in (B, ‖ · ‖) to

(κ∂t + ∂w
t ) u(t , x) = Lu(t , x) with u(0, x) = f (x).
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Remarks

(i) The assumption that f ∈ D(L) in the Theorem is to ensure
that all the integrals involved in the proof are absolutely
convergent in the Banach space B. This condition can be
relaxed if we formulate the time fractional equation in the weak
sense when the uniformly bounded strongly continuous
semigroup {Tt ; t ≥ 0} is symmetric in a Hilbert space L2(E ; m)
and so its quadratic form can be used to formulate weak
solutions. This is done in [CKKW1].

(ii) Special cases or related work: Meerschaert and Scheffler
(2008) and Kolokoltsov (2011). (Toaldo (2015)).

(iii) There are very limited results on uniqueness.

(iv) One needs to be very careful when dealing with time
frictional equations due to nature of singular integrals.
Probabilistic representation turns out to be quite effective to
overcome these difficulties.

Zhen-Qing Chen University of Washington Beijing Institute of TechnologyTime fractional Poisson equations: representation and estimates



Remarks

(i) The assumption that f ∈ D(L) in the Theorem is to ensure
that all the integrals involved in the proof are absolutely
convergent in the Banach space B. This condition can be
relaxed if we formulate the time fractional equation in the weak
sense when the uniformly bounded strongly continuous
semigroup {Tt ; t ≥ 0} is symmetric in a Hilbert space L2(E ; m)
and so its quadratic form can be used to formulate weak
solutions. This is done in [CKKW1].

(ii) Special cases or related work: Meerschaert and Scheffler
(2008) and Kolokoltsov (2011). (Toaldo (2015)).

(iii) There are very limited results on uniqueness.

(iv) One needs to be very careful when dealing with time
frictional equations due to nature of singular integrals.
Probabilistic representation turns out to be quite effective to
overcome these difficulties.

Zhen-Qing Chen University of Washington Beijing Institute of TechnologyTime fractional Poisson equations: representation and estimates



Remarks

(i) The assumption that f ∈ D(L) in the Theorem is to ensure
that all the integrals involved in the proof are absolutely
convergent in the Banach space B. This condition can be
relaxed if we formulate the time fractional equation in the weak
sense when the uniformly bounded strongly continuous
semigroup {Tt ; t ≥ 0} is symmetric in a Hilbert space L2(E ; m)
and so its quadratic form can be used to formulate weak
solutions. This is done in [CKKW1].

(ii) Special cases or related work: Meerschaert and Scheffler
(2008) and Kolokoltsov (2011). (Toaldo (2015)).

(iii) There are very limited results on uniqueness.

(iv) One needs to be very careful when dealing with time
frictional equations due to nature of singular integrals.
Probabilistic representation turns out to be quite effective to
overcome these difficulties.

Zhen-Qing Chen University of Washington Beijing Institute of TechnologyTime fractional Poisson equations: representation and estimates



Remarks

(i) The assumption that f ∈ D(L) in the Theorem is to ensure
that all the integrals involved in the proof are absolutely
convergent in the Banach space B. This condition can be
relaxed if we formulate the time fractional equation in the weak
sense when the uniformly bounded strongly continuous
semigroup {Tt ; t ≥ 0} is symmetric in a Hilbert space L2(E ; m)
and so its quadratic form can be used to formulate weak
solutions. This is done in [CKKW1].

(ii) Special cases or related work: Meerschaert and Scheffler
(2008) and Kolokoltsov (2011). (Toaldo (2015)).

(iii) There are very limited results on uniqueness.

(iv) One needs to be very careful when dealing with time
frictional equations due to nature of singular integrals.
Probabilistic representation turns out to be quite effective to
overcome these difficulties.

Zhen-Qing Chen University of Washington Beijing Institute of TechnologyTime fractional Poisson equations: representation and estimates



Fundamental solution

When the uniformly bounded strongly continuous semigroup
{Tt ; t ≥ 0} has an integral kernel p0(t , x , y) with respect to
some measure m(dx), then there is a kernel p(t , x , y) so that

u(t , x) := E [TEt f (x)] =

∫
E

p(t , x , y)f (y)m(dy);

in other words,

p(t , x , y) := E [p0(Et , x , y)] =

∫ ∞
0

p0(s, x , y)dsP(Et ≤ s)

is the fundamental solution to the time fractional equation
(κ∂t + ∂w

t ) u = Lu.

In a recent work with Kim, Kumagai and Wang, two-sided
estimates on p(t , x , y) are obtained when κ = 0 and {Tt ; t ≥ 0}
is the transition semigroup of a diffusion process that satisfies
two-sided Gaussian-type estimates or of a stable-like process
on metric measure spaces.
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Poisson equations

Let 0 < β < 1. How to solve

∂βt u(t , x) = ∆u(t , x)+f (t , x)

with u(0, x) = 0?

Let p(t , x , y) = Ep0(Et , x , y) be the fundamental solution of
∂βt u(t , x) = ∆u(t , x). Define

q(t , x , y) = ∂1−β
t p(·, x , y)(t).

It is known in literature that

u(t , x , y) =

∫ t

0

∫
Rd

q(s, x , y)f (t − s, y)dyds

solves the equation.
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Questions

• Solution in which sense?

• How to verify t → p(t , x , y) is time-fractional differentiable?

• Positivity: If f (t , x , y) ≥ 0, is the solution u(t , x) ≥ 0?

•What happens for general spatial generator L and for general
time fractional derivatives?
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Set up

Assume that {St ,P; t ≥ 0} is a driftless subordinatorwith infinite
Lévy measure ν and having bounded density p(r , ·) for each
r > 0. A sufficient condition for the latter is

lim
s→∞

φ(s)

ln(1 + s)
= lim

s→∞

1
ln(1 + s)

∫ ∞
0

(1− e−sx ) ν(dx) =∞.

(Hartman and Wintner’s condition.)

Suppose that {P0
t ; t ≥ 0} is a uniformly bounded strongly

continuous semigroup in some Banach space (B, ‖ · ‖) and
(L,D(L)) is its infinitesimal generator.

Goal: For any T0 > 0, solve

∂w
t u = Lu + f (t , x) on (0,T0]× E

with u(0, x) = g(x).
Zhen-Qing Chen University of Washington Beijing Institute of TechnologyTime fractional Poisson equations: representation and estimates



Set up

Assume that {St ,P; t ≥ 0} is a driftless subordinatorwith infinite
Lévy measure ν and having bounded density p(r , ·) for each
r > 0. A sufficient condition for the latter is

lim
s→∞

φ(s)

ln(1 + s)
= lim

s→∞

1
ln(1 + s)

∫ ∞
0

(1− e−sx ) ν(dx) =∞.

(Hartman and Wintner’s condition.)

Suppose that {P0
t ; t ≥ 0} is a uniformly bounded strongly

continuous semigroup in some Banach space (B, ‖ · ‖) and
(L,D(L)) is its infinitesimal generator.

Goal: For any T0 > 0, solve

∂w
t u = Lu + f (t , x) on (0,T0]× E

with u(0, x) = g(x).
Zhen-Qing Chen University of Washington Beijing Institute of TechnologyTime fractional Poisson equations: representation and estimates



Poisson equation

Theorem (C.-Kim-Kumagai-Wang, 2018+)

Let g ∈ D(L) and f (t , x) be a function defined on (0,T0]× E so
that for a.e. t ∈ (0,T0], f (t , ·) ∈ D(L) and

esssupt∈[0,T0]‖f (t , ·)‖+

∫ T0

0
‖Lf (t , ·)‖dt <∞.

The function

u(t , x) = E
[
P0

Et
g(x)

]
+ E

[∫ ∞
0

1{Sr<t}P0
r f (t − Sr , ·)(x)dr

]
= E

[
P0

Et
g(x)

]
+

∫ t

s=0

∫ ∞
r=0

P0
r f (t − s, ·)(x)p(r , s) dr ds

is the unique (strong) solution of ∂w
t u = Lu + f (t , x) on

(0,T0]× E with u(0, x) = g(x) in the following sense.
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Poisson equation

Theorem (C.-Kim-Kumagai-Wang, 2018+)

(i) u(t , ·) is well defined as an element in B for each t ∈ (0,T0]
such that supt∈(0,T0] ‖u(t , ·)‖ <∞, t 7→ u(t , x) is continuous in
(B, ‖ · ‖) and limt→0 ‖u(t , ·)− g‖ = 0.

(ii) For a.e. t ∈ (0,T0], u(t , ·) ∈ D(L) and Lu(t , ·) exists in the
Banach space B with

∫ T0
0 ‖Lu(t , ·)‖dt <∞.

(iii) For every T ∈ (0,T0],∫ T

0
w(T − t)(u(t , ·)− g) dt =

∫ T

0
(f (t , ·) + Lu(t , ·)) dt in B.
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Another fundamental solution

Suppose that (B, ‖ · ‖) = Lp(E ; ν) or C∞(E), and the semigroup
{P0

t ; t ≥ 0} has an integrable kernel p0(t , x , y) with respect to
some measure µ(dx) on E . Define

q(t , x , y) =

∫ ∞
0

p0(r , x , y)p(r , t)dr .

Then the unique solution in above theorem can be expressed
as

u(t , x) =

∫
E

p(t , x , y)g(y)µ(dy)+

∫ t

0

∫
E

q(s, x , y)f (t−s, y)µ(dy)ds.

(Recall p(t , x , y) = E [p0(Et , x , y)].)
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Remarks

• Positivity of q(t , x , y).

• Two-sided estimates of q(t , x , y).

• Stability of p(t , x , y) and q(t , x , y).

• An analogous probabilistic representation for solutions of
Poisson equation has been obtained recently by M. E.
Hernández-Hernández, V. N. Kolokoltsov and L. Toniazzi
(2017) and L. Toniazzi (2018) using a different approach and in
restrictive settings (Caputo derivative in time and Feller
generator L in space Rd , using Mittag-Leffer functions).
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A connection

Suppose S is a special Bernstein function; that is, λ 7→ λ/φ(λ)
is still a Bernstein function. Let S∗ be the subordinator with
Laplace expondent λ/φ(λ). Suppose St has density function
p(r , t).

Theorem (C.-Kim-Kumagai-Wang, 2018+)
For a.e. x 6= y ∈ E,

q(t , x , y) = ∂w∗
t p(·, x , y)(t)

in the sense that for all t > 0,∫ t

0
q(s, x , y)ds =

∫ t

0
w∗(t − s)p(s, x , y)ds.
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Heat kernel estimates for L

p0(t , x , y) � t−d/αF (d(x , y)/t1/α).

1) F (r) = exp
(
−rα/(α−1)

)
for α ≥ 2: local case

• α = 2 when L =
∑d

i,j=1
∂
∂xi

(
aij(x) ∂

∂xj

)
with

λ−1I ≤ (aij(x)) ≤ λI on Rd ; Aronson 1967

• α > 2 when L is the Laplacian on Sierpinski gasket or carpet;
Barlow-Perkins 1988, Barlow-Bass 1992. E.g. two-dimensional
Sierpinski gasket, d = log 3/ log 2 and α = dw := log 5/ log 2.

2) F (r) = (1 + r)−d−α with α > 0: non-local case:
• symmetric stable-like process on Alfhors d-regular space E .
C.-Kumagai 2003 (α < 2), C.-Kumagai-Wang 2018 (α < dw ):

Lf (x) = p.v.
∫

E
(f (y)− f (x))

c(x , y)

|x − y |d+α
µ(dy).
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Estimate

Particular case: St = β-subordinator, or Caputo derivative ∂βt .

Define

H̃≤1(t ,d(x , y)) =


tβ−1−βd/α, d < 2α,

t−β log
(

2tβ

d(x , y)α

)
, d = 2α,

= t1−β/d(x , y)d−2α, d > 2α,

H̃(c)
≥1 (t ,d(x , y)) =tβ−1−βd/α

(
d(x , y)α/tβ

)(1−β)/(α−β)

× exp
(
− (d(x , y)α/tβ)1/(α−β)

)
,

H̃(j)
≥1(t ,d(x , y)) =t2β−1/d(x , y)d+α.
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Estimates of fundamental solution

Theorem (C.-Kim-Kumagai-Wang 2018+)

(i) Suppose F (r) = exp(−rα/(α−1)) with α ≥ 2. Then

q(t , x , y) ' H̃≤1(t ,d(x , y)) if d(x , y) ≤ tβ/α,

q(t , x , y) � H̃(c)
≥1 (t ,d(x , y)) if d(x , y) ≥ tβ/α.

(ii) Suppose F (r) = (1 + r)−d−α. Then,

q(t , x , y) ' H̃≤1(t ,d(x , y)) if d(x , y) ≤ tβ/α,

q(t , x , y) ' H̃(j)
≥1(t ,d(x , y)) if d(x , y) ≥ tβ/α.
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Approach

We mainly use probabilistic approach by studying the
properties of subordinator and inverse subordinator. Here is an
example: How did we get

q(t , x , y) := ∂w∗
t p(t , x , y) =

∫ ∞
0

p0(r , x , y)p(r , t)dr?

First for t > 0, define G∗(t) :=
∫ t

0 w∗(r)dr .

Lemma (C. 2017)
For every t > 0,∫ t

0
w∗(t − s)P(Sr > s) ds = G∗(t)− E

[
G∗(t − Sr )1{t≥Sr}

]
.
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Approach: Poisson equation

For any x 6= y , since p(0, x , y) = 0,

∂w∗
t p(t , x , y) =

d
dt

∫ t

0
w∗(t − s)p(s, x , y) ds

=
d
dt

∫ t

0
w∗(t − s)

∫ ∞
0

p0(r , x , y) drP(Es ≤ r) ds

=
d
dt

∫ ∞
0

p0(r , x , y) dr

(∫ t

0
w∗(t − s)P(Sr ≥ s) ds

)
=

d
dt

∫ ∞
0

p0(r , x , y) dr
(
G∗(t)− E(G∗(t − Sr )1{t≥Sr})

)
= − d

dt

∫ ∞
0

p0(r , x , y) drE(G∗(t − Sr )1{t≥Sr})

= − d
dt

∫ ∞
0

p0(r , x , y) PS
r
(
LSG∗(t − ·)1{t≥·}

)
(0)dr .

Zhen-Qing Chen University of Washington Beijing Institute of TechnologyTime fractional Poisson equations: representation and estimates



Approach: Poisson equation

For any x ≤ t ,

LS
(
G∗(t − ·)1{t≥·}

)
(x)

=

∫ ∞
0

(
G∗((t − x − z)+)−G∗(t − x)

)
ν(dz)

= · · · · · · (using Fubini)

= −
∫ t−x

0
w(t − x − r)w∗(r) dr = −1

Clear that LSG(t − ·)(x) = 0 if x > t . Therefore,

∂w∗
t p(t , x , y) =

d
dt

∫ ∞
0

p0(r , x , y)PS
r 1(0,t](0) dr

=

∫ ∞
0

p0(r , x , y)p(r , t) dr if Sr has a density p(r , t).
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But ...

The function G∗(t − ·)1{t≥·} is not in the domain of the Feller
generator of the subordinator, and the last equality needs
justification. Thus we need a different proof.

Our final proof in fact goes the other way around. We define

q(t , x , y) =

∫ ∞
0

p0(r , x , y)p(r , t) dr

and show that it is the fundamental solution for Poisson
equation

∂w
t u = Lu + f (t , x) with u(0, x) = 0.

We then show that if the subordinator is special, then
q(t , x , y) = ∂w∗

t p(·, x , y)(t) using Laplace transform.
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Examples

(i) When {St ; t ≥ 0} is a β-subordinator with 0 < β < 1 with
Laplace exponent φ(λ) = λβ, Then St has no drift (i.e. κ = 0)
and its Lévy measure is µ(dx) = β

Γ(1−β)x−(1+β)dx . Hence

w(x) := µ(x ,∞) =

∫ ∞
x

β

Γ(1− β)
y−(1+β)dy =

x−β

Γ(1− β)
.

Thus the time fractional derivative ∂w
t f is exactly the Caputo

derivative of order β. In this case, our Theorem recovers the
main result of Baeumer-Meerschaert (2001) and
Meerschaert-Scheffler (2004).
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Truncated stable-subordinator

(ii) A truncated β-stable subordinator {St ; t ≥ 0} is driftless and
has Lévy measure

µδ(dx) =
β

Γ(1− β)
x−(1+β)1(0,δ](x)dx

for some δ > 0. In this case,

wδ(x) := µδ(x ,∞) = 1{0<x≤δ}

∫ δ

x

β

Γ(1− β)
y−(1+β)dy

=
1

Γ(1− β)

(
x−β − δ−β

)
1(0,δ](x).

The corresponding the fractional derivative is

∂wδ
t f (t) :=

1
Γ(1− β)

d
dt

∫ t

(t−δ)+

(
(t − s)−β − δ−β

)
(f (s)− f (0))ds.
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Stability

Clearly, as limδ→∞wδ(x) = w(x) := 1
Γ(1−β)x−β. Consequently,

∂wδ
t f (t)→ ∂w

t f (t), the Caputo derivative of f of order β, in the
distributional sense as δ → 0. Using the probabilistic
representation in the main Theorem, one can deduce that as
δ →∞, the solution to the equation ∂wδ

t u = Lu with
u(0, x) = f (x) converges to the solution of ∂βt u = Lu with
u(0, x) = f (x).
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Stability

(iii) If we define

ηδ(r) =
Γ(2− β) δβ−1

β
wδ(r) = (1−β)δβ−1

(
x−β − δ−β

)
1(0,δ](x),

then ηδ(r) converges weakly to the Dirac measure concentrated
at 0 as δ → 0. So ∂ηδt f (t) converges to f ′(t) for every
differentiable f . It can be shown that the subordinator
corresponding to ηδ, that is, subordinator with Lévy measure

νδ(dx) :=
(1− β) δβ−1

β
x−(1+β)1(0,δ](x)dx ,

converges as δ → 0 to deterministic motion t moving at
constant speed 1. Using the main Theorem, one can show that
the solution to the equation ∂ηδt u(t , x) = Lu(t , x) with
u(0, x) = f (x) converges to the solution of the heat equation
∂tu = Lu with u(0, x) = f (x).
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Thank you!
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